LOGISTIC REGRESSION

IN CLASSIFICATION MODEL

Regress -> estimate
relationship between
variables

SOME TYPES

Linear
Assume linear relation

Polynomial
Assume polynomial relation

Logistic
Assume logistic relation

EXAMPLE

WHAT IS LOGISTIC?

- Pierre Verhulst (1845-1847) developed a model of bounded population growth
- Verhulst named it "logistic model", the reason is unknown.
- One guess is that this model can be used to predict the supplies an army requires

$$
\frac{d y(x)}{d x}=a \cdot y(x) \quad \frac{d y(x)}{d x}=a \cdot y(x)(b-y(x))
$$

Simple growth

Logistic

simple growth

$$
y(x)=x_{0} e^{k x}
$$

WHY MUST LOGISTIC?

- Probability function must be $(-\infty, \infty) \rightarrow[0,1]$
- Using polynomial regression would be computationally expensive
- One of the simplest functions met the criteria is logistic function

BINARY
 CLASSIFICATION

We need a model that estimate some predictors to probability of of Bernoulli outcome

Some
features
x_{1}, x_{2}, \ldots

$$
\mathrm{P}(\mathrm{Y}=1)=0\left(x_{1}, x_{2}, \ldots\right)
$$

Log-odds

Odds:
likelihood of outcome

$$
\log \left(\frac{p}{1-p}\right)
$$

LOGISTIC = INVERSE OF THE LOG ODDS

$$
\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots
$$

Inversed to

$$
p=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots\right)}}
$$

which is a logistic function!

WRAP UP

- We actually do "linear regression" then "activates" it using a logistic function
- Sometimes the activator is called sigmoid function
- Sigmoid is all S-shaped functions and logistic is just one of it.

LET'S GENERALIZE!

- Assume there are n outcomes.
- Let us choose a "pivot" outcome. For example, $Y=n$
- Instead using odds, we will just take the ratio to one "pivot" outcome.
- So, for each $Y=k \in\{1,2, \ldots n-1\}$, we can regress its logratio:

$$
\log \left(\frac{P(Y=k)}{P(Y=n))}\right)=\mathrm{B}_{k} X
$$

- Note that $\mathrm{B}_{k} X=\beta_{k 0}+\beta_{k 1} x_{1}+\cdots$

LET'S GENERALIZE!

- Thus, we have

$$
\begin{aligned}
& \log \left(\frac{P(Y=1)}{P(Y=n))}\right)=\mathrm{B}_{1} X \\
& \log \left(\frac{P(Y=2)}{P(Y=n))}\right)=\mathrm{B}_{2} X \\
& \vdots \\
& \log \left(\frac{P(Y=n-1)}{P(Y=1))}\right)=\mathrm{B}_{n-1} X
\end{aligned}
$$

LET'S GENERALIZE!

- Little exponent manipulation yields

$$
\begin{gathered}
P(Y=1)=P(Y=n) e^{\mathrm{B}_{2} X} \\
P(Y=2)=P(Y=n) e^{\mathrm{B}_{3} X} \\
\vdots \\
P(Y=n-1)=P(Y=n) e^{\mathrm{B}_{n} X}
\end{gathered}
$$

- +

$$
\sum_{k=1}^{n-1} P(Y=k)=P(Y=n) \sum_{k=1}^{n-1} e^{\mathrm{B}_{k} X}
$$

LET'S GENERALIZE!

- We know that

$$
\begin{aligned}
& P(Y=n)=1-\sum_{k=1}^{n-1} P(Y=k)=1-P(Y=1) \sum_{k=1}^{n-1} e^{\mathrm{B}_{k} X} \\
& P(Y=n)=\frac{1}{1+\sum_{k=1}^{n-1} e^{\mathrm{B}_{k} X}}
\end{aligned}
$$

Thus,

$$
P(Y=k)=\frac{\sum_{k=1}^{n-1} e^{\mathrm{B}_{k} X}}{1+\sum_{k=1}^{n-1} e^{\mathrm{B}_{k} X}}, k \in\{1,2, \ldots, n-1\}
$$

LET'S GENERALIZE!

- Actually $P(Y=n)$ can be known once the other $P(Y=k)$ have been obtained.
- This makes B_{n} can't be uniquely identifiable
- So we can transform a new parameter $\mathrm{B}^{\prime}{ }_{k}=\mathrm{B}_{k}-\mathrm{B}_{n}$ and that will yield to

$$
P(Y=k)=\frac{e^{\mathrm{B}^{\prime} k_{k} X}}{\sum_{k=1}^{n} e^{\mathrm{B}^{\prime} k_{k} X}}
$$

Yes, this is softmax function for categorical classification

WRAP UP

- If we have $k>2$ category, we use softmax to activate the output.
- Softmax will be reduced to logistic function if $k=2$

THANKS!

Do you have any questions?
aditya.fphoenix@gmail.com

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics \& images by Freepik.

