
LOGISTIC 
REGRESSION

IN CLASSIFICATION MODEL



Regress -> estimate 
relationship between 

variables

MISSION 
STATEMENT

WHAT IS 
REGRESSION?



INDEPENDEN
T

Predictor Outcome

DEPENDENT

?

Estimator



SOME TYPES

Linear
Assume linear relation

Polynomial
Assume polynomial 

relation

Logistic
Assume logistic relation



EXAMPLE

Source: Javatpoint.com



● Pierre Verhulst (1845-1847) developed a model 
of bounded population growth 

● Verhulst named it “logistic model”, the reason 
is unknown.

● One guess is that this model can be used to 
predict the supplies an army requires

WHAT IS LOGISTIC?



Simple 
growth

𝑑𝑦(𝑥)

𝑑𝑥
= 𝑎 ⋅ 𝑦(𝑥)(𝑏 − 𝑦 𝑥 )

Logistic

𝑑𝑦(𝑥)

𝑑𝑥
= 𝑎 ⋅ 𝑦(𝑥)



Simple 
growth Logistic

𝑦(𝑥) = 𝑥0𝑒
𝑘𝑥 𝑦(𝑥) =

𝑏

1 + 𝑒𝑎 𝑥−𝑥0



● Probability function must be −∞,∞ → [0,1]
● Using polynomial regression would be 

computationally expensive
● One of the simplest functions met the criteria 

is logistic function

WHY MUST LOGISTIC?



BINARY 
CLASSIFICATION

We need a model that 
estimate some 

predictors to probability 
of of Bernoulli outcome



INDEPENDEN
T

Some
features
𝑥1, 𝑥2, …

Probability of a
Bernoulli Outcome 

𝑃(𝑌 = 1)

DEPENDENT

?

Estimator

P Y = 1 = Θ(𝑥1, 𝑥2, … )



Log-odds

Odds:
likelihood of outcome

Log-odds:
logarithm of oddslog

𝑝

1 − 𝑝



INDEPENDEN
T

Some
features
𝑥1, 𝑥2, …

Log-odds

log
𝑝

1 − 𝑝

DEPENDENT

?

Linear Estimator

log
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯



log
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯

Inversed to

𝑝 =
1

1 + 𝑒− 𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯

which is a logistic function!

LOGISTIC = INVERSE OF THE LOG ODDS



WRAP UP

● We actually do “linear 
regression” then 
“activates” it using a 
logistic function

● Sometimes the activator 
is called sigmoid 

function

● Sigmoid is all S-shaped 
functions and logistic is 
just one of it.

Source: vbvsharma.com



LET’S GENERALIZE!

● Assume there are 𝑛 outcomes.
● Let us choose a “pivot” outcome. For example, 𝑌 = 𝑛
● Instead using odds, we will just take the ratio to one “pivot” 

outcome.
● So, for each 𝑌 = 𝑘 ∈ {1,2, …𝑛 − 1}, we can regress its log-

ratio:

log
𝑃 𝑌 = 𝑘

𝑃 𝑌 = 𝑛 )
= Β𝑘𝑋

● Note that Β𝑘𝑋 = 𝛽𝑘0 + 𝛽𝑘1𝑥1 +⋯



LET’S GENERALIZE!

● Thus, we have

log
𝑃 𝑌 = 1

𝑃 𝑌 = 𝑛 )
= Β1𝑋

log
𝑃 𝑌 = 2

𝑃 𝑌 = 𝑛 )
= Β2𝑋

⋮

log
𝑃 𝑌 = 𝑛 − 1

𝑃 𝑌 = 1 )
= Β𝑛−1𝑋



LET’S GENERALIZE!

● Little exponent manipulation yields
𝑃 𝑌 = 1 = 𝑃 𝑌 = 𝑛 𝑒Β2𝑋

𝑃 𝑌 = 2 = 𝑃 𝑌 = 𝑛 𝑒Β3𝑋

⋮
𝑃 𝑌 = 𝑛 − 1 = 𝑃 𝑌 = 𝑛 𝑒Β𝑛𝑋

---------------------------------------------------------------
- +



𝑘=1

𝑛−1

𝑃 𝑌 = 𝑘 = 𝑃 𝑌 = 𝑛 

𝑘=1

𝑛−1

𝑒Β𝑘𝑋



LET’S GENERALIZE!

● We know that

𝑃 𝑌 = 𝑛 = 1 −

𝑘=1

𝑛−1

𝑃 𝑌 = 𝑘 = 1 − 𝑃 𝑌 = 1 

𝑘=1

𝑛−1

𝑒Β𝑘𝑋

𝑃 𝑌 = 𝑛 =
1

1 + σ𝑘=1
𝑛−1 𝑒Β𝑘𝑋

Thus,

𝑃 𝑌 = 𝑘 =
σ𝑘=1
𝑛−1 𝑒Β𝑘𝑋

1 + σ𝑘=1
𝑛−1 𝑒Β𝑘𝑋

, 𝑘 ∈ {1,2, … , 𝑛 − 1}



LET’S GENERALIZE!

● Actually 𝑃(𝑌 = 𝑛) can be known once the other 𝑃 𝑌 = 𝑘
have been obtained. 

● This makes Β𝑛 can’t be uniquely identifiable
● So we can transform a new parameter Β′𝑘 = Β𝑘 − Β𝑛 and 

that will yield to

𝑃 𝑌 = 𝑘 =
𝑒Β′𝑘𝑋

σ𝑘=1
𝑛 𝑒Β′𝑘𝑋



𝑃 𝑌 = 𝑘 =
𝑒Β′𝑘𝑋

σ𝑘=1
𝑛 𝑒Β′𝑘𝑋

Yes, this is softmax function for categorical classification 



WRAP UP

● If we have 𝑘 > 2 category, we 
use softmax to activate the 
output.

● Softmax will be reduced to 
logistic function if 𝑘 = 2



CREDITS: This presentation template was created 
by Slidesgo, including icons by Flaticon, and 
infographics & images by Freepik. 

THANKS!

Do you have any questions?

aditya.fphoenix@gmail.com

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

