


WHAT IS
REGRESSION?

Regress -> estimate
relationship between
variables
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SOME TYPES |
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Assume linear relation Assume polynomial Assume logistic relation
relation



EXAMPLE

Simple linear model Polynomial model

N

y=bo+bix y=bo+bixi+bax:?

X

Source: Javatpoint.com




WHAT IS LOGISTIC?

. Pierre Verhulst (1845-1847) developed a model
of bounded population growth

. Verhulst named it “logistic model”, the reason
Is unknown.

. One guess Is that this model can be used to
predict the supplies an army requires
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WHY MUST LOGISTIC?

. Probability function must be (—o0, ) — [0,1]
. Using polynomial regression would be

computationally expensive
. One of the simplest functions met the criteria

Is logistic function



BINARY
CLASSIFICATION

We need a model that
estimate some
predictors to probability
of of Bernoulli outcome




INDEPENDEN
T

Some | 2 ‘ Probability of a

features Bernoulli Outcome
X1, X, .. P(Y=1)

DEPENDENT

Estimator

P(Y=1) =0(xq,x5,...)
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Odds:
likelihood of outcome

Log-odds:
logarithm of odds
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p
log (1 — p) = Po + B1x1 + Paxz + -



LOGISTIC = INVERSE OF THE LOG ODDS

p
log (1 — p) = fo + p1x1 + Poxz + -

Inversed to

1
P = 1 + e~ (BotB1x1+f2x2+)

which 1s a logistic function!




WRAP UP

We actually do “linear
regression” then
“activates” 1t using a
logistic function
Sometimes the activator
Is called sigmoid
function

Sigmoid is all S-shaped
functions and logistic Is
just one of it.

Source: vbvsharma.com




LET’'S GENERALIZE!

Assume there are n outcomes.

Let us choose a “pivot” outcome. For example, Y =n
Instead using odds, we will just take the ratio to one “pivot”
outcome.

So, foreach Y = k € {1,2,...n — 1}, we can regress its log-

ratio:
(P =RN
B\Pr=n)) " *

Note that By X = Sro + Lr1ix1 +




LET’'S GENERALIZE!

. Thus, we have

e (FY =D _p 4
S\py=n))

e (T =2\ _p o
B\piy=n))) 2

C(Pr=n-D\
°g< P(Y = 1)) )‘ e




LET’'S GENERALIZE!

Little exponent manipulation yields
P(Y =1) = P(Y = n)ebB2X
P(Y =2) =P(Y =n)ebBsX



LET’'S GENERALIZE!

We know that

P(Y=n)=1—2P(Y=k)=1—P(Y=1)ZeBkX
1

P(Y = Tl) — 1 _I_ZTI};}eBkX
Thus,
ZTL BkX
P(Y =k) = ke{l?2 . ,n—1
=0 = 1 ke }




LET’'S GENERALIZE!

. Actually P(Y = n) can be known once the other P(Y = k)

have been obtained.

This makes B,, can’t be uniquely identifiable

So we can transform a new parameter B, = B, — B,, and
that will yield to

eB’kX

Z};Cl:l eB'kX

P(Y = k) =




eB/kX

P(Y =k) =
( ) ZzleB/kX

Yes, this is softmax function for categorical classification




WRAP UP

. Softmax will be reduced to

If we have k > 2 category, we
use softmax to activate the

output.

logistic function if k = 2




THANKS!

Do you have any questions?

aditya.fphoenix@gmail.com

CREDITS: This presentation template was created
by Slidesgo, including icons by Flaticon, and
infographics & images by Freepik.
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