Seberapa Benar Kebenaran Statistik?

Aditya Firman Ihsan

66
Berbicaralah dengan data!
iil kata banyak orang

Apa maksudnya?

Berdasarkan dala = pasti benar?

Bagaimana kita tahu sesuatu itu benar?

Kebenaran elementer

disaksikan langsung (dari realita)

 diasumsikan/dianggap/dipercaya benar
Kebenaran komposit

disimpulkan dari pernyataan lain yang sudah diketahui benar
diterima dari orang yang mengatakan itu benar

Menyimpulkan sesuatu:

- Induksi dari beragam pengamatan spesifik
- Deduksi dari preposisi/gagasan umum

Bagaimana sebenarnya melakukan induksi?

$0^{1} 10^{\circ}$ Apakah
Melakukan sebanyak mungkin pengamatan? Mengumpulkan data selengkap mungkin?

Data

0

reprsentasi realitas, tidak hanya berupa ukuran numerik, tapi bisa juga peristiwa (event)

Realita itu kompleks

 $+$instrumen untuk mengamatinyâ terbatas

0
 Data yang tak pérnah bisa lengkap

Informasi yang tidak pernah bisa pasti benar

Padahal,
 Informasi yang benar selalu dibutuhkan untuk memutuskan sesuatu.

Yang Pasti adalah Ketidakpastian

Pada akhirnya, setiap orang selalu berpikir, memilih, dan bertindak dengan menerka-nerka

Manusia adalah peramal!

Tidak ada hal yang bisa diketahui secara langsung dengan kepastian 100%.

Tapi,

kita peramal jenius. 0
Daripada pasrah pada ketidakpastian, manusia belajar untuk "mengendalikan" ketidakpastian itu,

Jadikan ketidakpastian itu bagian dari informasi!
Itulah statistika
Alat untuk menyimpulkan dengan tegas lengkap dengan jaminan ketidakpastiannya.

Saya tahu bahwa A benar

Saya yakin sekian persen bahwa A benar

Bagaimana statistika melakukannya?

Dengan dibawa dulu memutar ke dunia tanpa bias
bernama matematika

Matematika bekerja dengan objek minim tafsir

$$
\text { Objek riil } \rightarrow \text { Kuantifikasi }
$$

Bagaimana cara kuantifikasi...

- kemajuan ekonomi?
- kepuasan masyarakat?
- keberhasilan pendidikan?

Metrik

- Kemajuan e Ronomi $->$ - ${ }^{1}$ GDP
- Kepuasan masyarakat-> Indeks Kebahagiaan
- Keberhasilan Pendidikan -> nilai ujian

Sederhana?

Jangan lupa, data yang diukur tidak selalu bisa lengkap!

Data masyarakat Indonesia?
Data hasil panen jagung di Jawa Barat?
Data cuaca selama 1 dekade?
Data pasien suatu Rumah Sakit?

Melihat yang besar dari yang kecil
Perkenalkan, Sampel!

Sampel < Populasi sesungguhnya 10° Sehingga 0

Kesimpulan dari Sampel < Kebenaran sesungguhnya

Eksperimen

proses pengambilan data sampel
(pengukuran nilai numerik atau pengamatan peristiwa)

Ekperimen ideal:

Tanpa manipulasi, tanpa bias

Jaminannya?

Tidak acak

sampel tidak mencerminkan populasi

Keacakan eksperimen

Jaminan statistik terhadap akurasi yang dihasilkan Tanpa pola yang acak, tidak ada analisa statistik

Acak berarti berar

Sampel acak sederhana

- Tanpa bias (setiap elemen punfa peluang yang sama untuk terpilih)
- Independen (pemilihan elemen yang satu tidak mempengaruhi peluang pemilihan elemen lain)

Mungkinkah?

Tidak, tapi dapat didekati

Metode sampling

Cara untuk mendapatkan sampel seacak mungkin

Metode sampling
Cara ideal:
mengacak seluruh populasi

Metode sampling
Sampling Gertingkat Sampling kelompok,
Sampling sistematis, etc

Metode sampling

Akan selalu ada bias yang sukar diatasi

Bagaimana memastikan responden menjawab jujur atau benar-benar paham maksud pertanyaannya?

Apa yang bisa disimpulkan dari sampel?

Ruang Sampel

Semua kemungkinan hasil dari suatu eksperimen acak

Ruang Sampel

Misal, 10 data survey untuk dua kandidat
$A, B, B, A, A, A, B, A, A, B$
Ruang sampelnya hanya $\{A, B\}$

Ruang Sampel

Apakah langsung bisa disimpulkan bahwa kandidat A menang?

Ruang Sampel

Sampel bukan representasi utuh populasi.

 Kita hanya bisa melihat frekuensi relatifnya.
Frekuensi Relatif

Peluang kemunculan suatu hasil elementer ketika eksperimennya diulang

$$
\begin{gathered}
\text { Ada } 10 \text { data IPK: } \\
3.0,3.1,3.5,2.5,1.0,3.9,1.9,2,6,3.3,3.0
\end{gathered}
$$

Kesimpulan:
60 persen mahasiswa IPK dibawah 3?

Yang tepat:

Bila diambil sampel mahasiswa baru dari populasi, maka peluang IPK mahasiswa itu di bawah 3 adalah 0.6

Teori Peluang

Basis fundamental matematika statistika
Ya, statistika berkembang dari meja judi

Teori Peluang

Setiap anggota ruang sampel dipetakan ke suatu nilai peluang (dari 0 ke 1)
Total peluang seluruh isi ruang sampel harus sama dengan 1.

Teori Peluang

Contoh

Eksperimen: pelemparan koin Ruang sampel: \{gambar, angka\} Peluang gambar $=$ peluang angka $=0.5$

Teori Peluang

Ruang sampel dibuat numerik \rightarrow Peubah Acak $\{$ gambar, angka $\} \rightarrow\{0,1\}$

Teori Peluang

0

Setiap nilai peubah acak dipetakan ke suatu nilai peluang: Distribusi

Distribusi Peluang

Distribusi Peluang

Karakteristik suatu sampel Tidak selalu dapat dihitung Diasumsikan dari populasi

Distribusi peluang + Peubah acak

Model statistik

Apa yang bisa dilakukan terhadap model statistik?

Teorema Limit Pusat

Distribusi gabungan dari sekelompok peubah acak, dalam kondisi tertentu, selalu dapat diubah menjadi berbentuk...

Standard Normal Distribution

1.
 Dari suatu data sampel,

 kita bisa hitung nilai dari variabel yang kita pandangMisal data survey sebelumnya, berarti kita dapatkan 60 persen kandidat memilih A

2.

Kita bisa hitung simpangan baku dari data sampel (bergantung banyaknya sampel)

Misal, didapatkan simpangan baku $=0.154$

Kita bisa tentukan apa yang mâu kita atur: Kesalahan atau keyakinan

Misal, kita tetapkan kita ingin bisa yakin 95.4 persen dengan hasil survey.

4.

Gunakan grafik lonceng dioatas untuk dapatkan kesalahannya berapa

Misal, ternyata diperoleh kesalahannya adalah 2 kali simpangan baku, sehingga didapatkan 0.6 ± 0.308

Dalam kasus survey 10 pemilih tadi, Berarti kemungkinan kandidat A menang sebenarnya adalah di antara

$$
29.2-90.8 \%!
$$

Hasil statistik lengkap harus memuat 3 hal:

- Nilai perkiraan
- Margin kesalahan

1- Tingkat keyakinan

Apakah statistika cuma itu doang?

Tentu tidak.

Dari perbandingan populasi, uji hipotesa, regresi, hingga aplikasinya saat ini di machine learning, semua menggunakan statistika

Tapi semuanya berdiri di atas konsep yang sama,

Konsep peluang, konsep keacakan, Konsep bahwa kita bisa mengukur ketidakpastian

Potensi bias statistik

- Asumsi model
- Formulasi metrik (Kuantifikasi)
- Penarikan Sampel
- Pengambilan data dari sampel
- Interpretasi dan penyajan kesimpulan statistik

1. Bias Asumsi

Realita mengandung banyak variable, sehingga perlu diserderhanakan

1. Bias Asumsi

Hal seperti independensi setiap eksperimen tidak punya jaminan selain diasumsikan
2. Bias Metrik

Angka = label terurut
Tapi, label dari apa?

2. Bias Metrik

Nilai Ujian Pilihan ${ }^{\circ}$ Ganda \rightarrow kemampuan memilih suatu pilihan yang tepat dari pertanyaan yang diberikan, yang diatur sesuai target kurikulum.

2. Bias Metrik

Apakah ketepatan memilih pilihan jawaban merepresentasikan keberhasilan sekolah?

3. Bias sampel

Ekstraksi data dari realitas tidak mungkin efisien 100 persen

4. Bias penyajian

Apa yang disampaikan ke publik tidak selalu utuh, apalagi jika mementingkan keterbacaan cepat

Jadi,
 Seberapa benar kebenaran statistik?

