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“An outlier is an observation which deviates so much from other 
observations as to arouse suspicions that it was generated by a 

different mechanism.”

– Hawkins, Identification of Outliers (1980)



Anomaly

● Anomalies (often referred to as outliers, abnormalities, rare 
events, or deviants), are data points or patterns in data that do not 
conform to a notion of normal behavior. 

● Anomaly detection is the task of finding those patterns in data that 
do not adhere to expected norms, given previous observations. 



Anomaly Detection

- IT analytics, 
- network intrusion analytics, 
- medical diagnostics, 
- financial fraud protection, 

- manufacturing quality control, 
- marketing and social media 

analytics, 
- and more.

Anomaly detection has applications in a variety of domains, including 



Different Types of Anomalies

Global outliers, or point anomalies, occur far outside the range of the 
rest of a data set.

Contextual outliers deviate from other points in the same context, e.g., 
holiday or weekend sales.

Collective outliers occur when a range of different types of data vary 
when considered together, for example, ice cream sales and 
temperature spikes.
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How machine works?

Data (input)

Output

Algorithm



But how does exactly human learn?

Information

Knowledge

Conclusion
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We can make machine also “learns”.

Data (Input)

Model

Output



We can make machine also “learns”.
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Neural Network as Modern ML

Neural Network becomes the bridge to 
new paradigm of ML, called deep 
learning

Artificial 
Intelligence

Machine 
Learning

Neural 
Network

Deep 
Learning



Neural Network as Modern ML
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Why Data-driven Detection

● Processing large datasets in real-time
AI is capable of efficient processing, labeling and categorization of large datasets in real-
time
● Automated, real-time detection
AI enables automated, real-time detection of anomalies by consistently monitoring and 
learning patterns so that AI can quickly detect anomalies as they occur.
● Effective pattern recognition
Large datasets exhibit complex behavior that traditional systems may struggle to identify. 
AI-powered solutions excels in recognizing patterns, learning from them, and accurately 
identifying any deviations or anomalies.
● Proactive anomaly management
Traditionally, anomalies were handled reactively. AI-powered systems enable a proactive 
methodology to detect anomalies via closed-loop automation. 



ML for Anomaly Detection



Supervised Anomaly Detection

● Problem of imbalanced class -> 
abnormal class always a minority

● Anomaly classification tends to 
give bias.

● For example, if the model always 
give output “normal”, its accuracy 
is 90%.



Supervised Anomaly Detection

● In supervised paradigm, 
we need to know in 
advance which data is 
anomaly to label it.

● All supervised methods of 
ML can be applied



Unsupervised Anomaly Detection

In unsupervised paradigm, 
anomaly is detected purely 
on the internal characteristic 
of the data.



Unsupervised Anomaly Detection

The underlying strategy for anomaly 
detection is to first model normal 
behavior and then exploit this 
knowledge to identify deviations. 

How to model “normal behavior”?



(1) Statistical approach

Z-score (standard score): it measures how many standard deviations a 
data point is away from the mean. Generally, instances with a z-score 
over 3 are chosen as outliers.

Interquartile range (IQR): When an instance is beyond Q1 or Q3 for 
some multiplier of IQR, they are considered outliers. The most common 
multiplier is 1.5, making the outlier range.

Time Series decomposition: Data can be decomposed to multiple 
components with noise/residual. A threshold for the residual can be 
taken to determine anomalies
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(2) “Geometry” Based

We can determine the anomalies as data points that is far from majority of data.

(a) Centroid 
Clustering

Local Outlier Factor One-Class SVM



(2) “Geometry” Based

We can determine the anomalies as data points that is far from majority of data.

(b) Local Outlier 
Factor

Local Outlier Factor



(2) “Geometry” Based

We can determine the anomalies as data points that is far from majority of data.

(c) One-Class SVM 
(OCSVM)



(3) Tree Based

Isolation Forest uses a collection of decision trees that recursively divide complex 
datasets until each instance is isolated. The instances that get isolated the quickest 
are considered outliers.



(4) Reconstruction Based (Deep Learning)

Reconstruction-based 
detection works by any deep 
learning model, from the 
simplest Neural Network to the 
complex one such as GAN 
(Generative Adversarial 
Network)

Model
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Gas pipeline system monitoring

Pipeline system of natural gas needs to be monitored carefully to make sure gas 
transmission and delivery is in order. Some operational variables data at some node 
points are collected real-time.



Gas pipeline system monitoring

There are many potential anomalies seen in the graph. But make sure anomalies can be 
distinguished from “dirty data”. Dirty data may affect “normal behavior”, so it needs to be 
cleaned first.



Time Series Decomposition



Anomalies from Residual

By time series decomposition, we can set a threshold to determine anomalies outside the 
threshold.



Anomalies from Reconstruction Score

If we train a deep 
learning model to 
reconstruct the 
data, we can 
compute its



Intertwine of Anomalies



Continuous Development

Model should 
be updated 
continuously, 
to capture 
new trends in 
the data
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Continuous Development

Maintenance of Anomaly 
Detection System should be 
done continuously.

An anomaly in a period of 
time can be seen as normal 
in other periods.

Data 
Collection and  

Preparation

AI Model 
Development

Deployment 
and 

Integration

Monitoring 
and 

Evaluation
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